skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lyons, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundMicroorganisms are the biotic foundation for nutrient cycling across ecosystems, and their assembly is often based on the nutrient availability of their environment. Though previous research has explored the seasonal lake turnover and geochemical cycling within the Salton Sea, California’s largest lake, the microbial community of this declining ecosystem has been largely overlooked. We collected seawater from a single location within the Salton Sea at 0 m, 3 m, 4 m, 5 m, 7 m, 9 m, 10 m, and 10.5 m depths in August 2021, December 2021, and April 2022. ResultsWe observed that the water column microbiome significantly varied by season (R2 = 0.59,P = 0.003). Temperature (R2 = 0.27,P = 0.004), dissolved organic matter (R2 = 0.13,P = 0.004), and dissolved oxygen (R2 = 0.089,P = 0.004) were significant drivers of seasonal changes in microbial composition. In addition, several halophilic mixotrophs and other extremotolerant bacteria were consistently identified in samples across depths and time points, though their relative abundances fluctuated by season. We found that while sulfur cycling genes were present in all metagenomes, their relative coverages fluctuated by pathway and season throughout the water column. Sulfur oxidation and incomplete sulfur oxidation pathways were conserved in the microbiome across seasons. ConclusionsOur work demonstrates that the microbiome within the Salton Seawater has the capacity to metabolize sulfur species and utilize multiple trophic strategies, such as alternating between chemorganotrophy and chemolithoautrophy, to survive this harsh, fluctuating environment. Together, these results suggest that the Salton Sea microbiome is integral in the geochemical cycling of this ever-changing ecosystem and thus contributes to the seasonal dynamics of the Salton Sea. Further work is required to understand how these environmental bacteria are implicated relationship between the Salton Sea’s sulfur cycle, dust proliferation, and respiratory distress experienced by the local population. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Historically characterized by pristine streams that support robust populations of Arctic grayling, Dolly Varden, and chum salmon, the southern slopes of the Brooks Range provide valuable economic and subsistence resources for local communities. However, since 2019, dozens of formerly clear-running streams have turned turbid and orange with iron precipitates. Seeps have been identified in the tundra and in upland rock formations. Limited data show very low pH in seep water (less than 3.0), downslope vegetation mortality, and dramatic declines in juvenile fish abundance in affected headwaters. The causes of this rapidly spreading degradation of pristine streams remains unknown. The proliferation of turbid orange streams west of the Dalton Highway ( greater than 30 since 2019) is a threat to wilderness characteristics, drinking water, subsistence resource availability, and a growing commercial salmon fishery in northwest Alaska. With many terrestrial and aquatic species dependent upon the seasonal influx of salmon, the loss of fish habitat could induce ecosystem collapse, despite the protections afforded by a vast network of National Parks and Preserves. The degradation of formerly pristine streams is occurring at such a rapid pace that we may soon lose the opportunity to compare affected with nearby unaffected streams. This comparison is essential to develop the mechanistic, causal understanding that would allow us to predict which streams will turn next and the threats to downstream villages. The community of Kiana, for instance, sits at the confluence of the Squirrel and Kobuk Rivers. At least two streams in the Squirrel watershed have turned since 2020, while two large tributaries of the Kobuk turned in 2019. The Squirrel and large Kobuk tributaries, like the Salmon River, produce much of the fish harvested by Kiana residents. This dataset includes field measurements of pH, specific conductivity, dissolved oxygen and turbidity, along with laboratory measurements of metal concentrations in acidified water samples from tundra seeps, tributaries and rivers in the western Brooks Range. The watersheds that were sampled include Timber Creek, Tukpahlearik Creek, Salmon River, Kallarichuk River, Kobuk River and Devil's Lake, which is the drinking water source for the village of Kotzebue, Alaska. 
    more » « less
  3. Abstract Climate change in the Arctic is altering watershed hydrologic processes and biogeochemistry. Here, we present an emergent threat to Arctic watersheds based on observations from 75 streams in Alaska’s Brooks Range that recently turned orange, reflecting increased loading of iron and toxic metals. Using remote sensing, we constrain the timing of stream discoloration to the last 10 years, a period of rapid warming and snowfall, suggesting impairment is likely due to permafrost thaw. Thawing permafrost can foster chemical weathering of minerals, microbial reduction of soil iron, and groundwater transport of metals to streams. Compared to clear reference streams, orange streams have lower pH, higher turbidity, and higher sulfate, iron, and trace metal concentrations, supporting sulfide mineral weathering as a primary mobilization process. Stream discoloration was associated with dramatic declines in macroinvertebrate diversity and fish abundance. These findings have considerable implications for drinking water supplies and subsistence fisheries in rural Alaska. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Pyrite trace element (TE) chemistry is now widely employed in studies of past ocean chemistry. Thus far the main proof of concept has been correlation between large data sets of pyrite and bulk analyses emphasizing redox sensitive TE data from ancient samples spanning geologic time. In contrast, pyrite TE data from modern settings are very limited. The sparse available data are averages from samples from the Cariaco Basin without stratigraphic resolution and from estuarine sediments. To fill this gap, we present TE data (Co, Ni, Cu, Zn, Mo, Ag, Pb, Bi) from the two largest euxinic basins on Earth today, locations where the majority of the pyrite formed within the water column, the Black Sea and Cariaco Basin. These locations have different water column TE contents due to their relative degrees of restriction from the open ocean, thus providing an ideal test of the relationship between pyrite precipitated under euxinic conditions from basins with different degrees of basin restriction and dissolved TE concentration. At each site we observed that down-core trends for pyrite increase before reaching relatively steady values for most TE. This observation suggests that instead of all the TE being sourced directly from the water column, some are incorporated from the sediments, presumably desorbing from detrital materials. However, since much of the adsorbed TE is adsorbed from the overlying water, the pyrite chemistry still seems to reflect the water chemistry at or near the surface. Indeed, for Mo, there is less variation in pyrite than in bulk sediment. Additionally, we found that pyrite formed during diagenesis due to sulfide diffusion into iron-rich muds revealed low-TE contents, except for siderophile elements likely to have been adsorbed onto Fe (hydr)oxides, highlighting the risk of potential false negatives from pyrite formed under these conditions. This relationship highlights the need for detailed understanding of the full context, including the use of complementary geochemical data such as sulfur isotope trends, in efforts to use pyrite TE to interpret conditions in the global ocean. 
    more » « less
  5. Abstract Pyrite framboids (spherical masses of nanoscale pyrite) are among the earliest textures of pyrite to form in sediments. It has been proposed that their trace-element (TE) contents can be used to track the TE composition of the water column in which they formed. However, it is not clear how these TEs are associated with the framboidal pyrite grains. For instance, it is important to know whether they are incorporated uniformly or are enriched in different regions of the framboid. We used high-resolution scanning transmission electron microscopy to identify chemical zoning within pyrite framboids. We found that initial, nanoscale pyrite euhedral crystals, which make up the volumetric majority of the framboids, are covered/infilled by later pyrite that templates on the earlier pyrite. Further, this later pyrite is enriched in TEs, suggesting that many TEs are incorporated in pyrite relatively late (during early diagenesis; not in the water column). This observation suggests that although chemical analyses of pyrite framboids may provide ocean-water chemistry trends through time, the details are complex. Specifically, the TEs found in pyrite may be linked to adsorption onto organic matter, detrital material, and authigenic minerals such as Fe- and Mn-oxide phases followed by desorption in the sediments or release via dissolution and incorporation into pyrite as overgrowths on the initial nanoscale euhedral crystals that make up framboids. While the use of pyrite chemistry to understand past ocean conditions remains promising, and even diagenetic additions may not preclude the utility of pyrite for reconstructing ancient ocean conditions, care must be taken in interpretations because the end concentration may be influenced by diagenesis. 
    more » « less
  6. null (Ed.)
    Low oxygen conditions in the modern Baltic Sea are exacerbated by human activities; however, anoxic conditions also prevailed naturally over the Holocene. Few studies have characterized the specific paleoredox conditions (manganous, ferruginous, euxinic) and their frequency in southern Baltic sub-basins during these ancient events. Here, we apply a suite of isotope systems (Fe, Mo, S) and associated elemental proxies (e.g., Fe speciation, Mn) to specifically define water column redox regimes through the Baltic Holocene in a sill-proximal to sill-distal transect (Lille Belt, Bornholm Basin, Landsort Deep) using samples collected during the Integrated Ocean Drilling Program Expedition 347. At the sill-proximal Lille Belt, there is evidence for anoxic manganous/ferruginous conditions for most of the cored interval following the transition from the Ancylus Lake to Littorina Sea but with no clear excursion to more reducing or euxinic conditions associated with the Holocene Thermal Maximum (HTM) or Medieval Climate Anomaly (MCA) events. At the sill-distal southern sub-basin, Bornholm Basin, a combination of Fe speciation, pore water Fe, and solid phase Mo concentration and isotope data point to manganous/ferruginous conditions during the Ancylus Lake-to-Littorina Sea transition and HTM but with only brief excursions to intermittently or weakly euxinic conditions during this interval. At the western Baltic Proper sub-basin, Landsort Deep, new Fe and S isotope data bolster previous Mo isotope records and Fe speciation evidence for two distinct anoxic periods but also suggest that sulfide accumulation beyond transient levels was largely restricted to the sediment-water interface. Ultimately, the combined data from all three locations indicate that Fe enrichments typically indicative of euxinia may be best explained by Fe deposition as oxides following events likely analogous to the periodic incursions of oxygenated North Sea waters observed today, with subsequent pyrite formation in sulfidic pore waters. Additionally, the Mo isotope data from multiple Baltic Sea southern basins argue against restricted and widespread euxinic conditions, as has been demonstrated in the Baltic Proper and Bothnian Sea during the HTM or MCA. Instead, similar to today, each past Baltic anoxic event is characterized by redox conditions that become progressively more reducing with increasing distance from the sill. 
    more » « less